
Git
Source Intro
Architecture

Feature Development
Patch Submission

PostgreSQL Server Development

Stephen Frost
stephen@crunchydata.com

Crunchy Data

October 27, 2015

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Trainer - Stephen Frost

Chief Technology Officer @ Crunchy Data

Committer

Major Contributor

Implemented the roles system in 8.3

Column-level privileges in 8.4

Contributions to PL/pgSQL, PostGIS

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Crunchy Data

What is Crunchy Data?

PostgreSQL Support

Training

Consulting

Open Source Development

Committed to Open Source

http://crunchydata.com

Stephen Frost PGConf.EU 2015

http://crunchydata.com

Git
Source Intro
Architecture

Feature Development
Patch Submission

Downloading PostgreSQL
Commit Log
Branches
Tracking Changes

Official Release tarball

Only the sources from the release

Includes parser output (bison/flex)

Fewer dependencies required for building

Not very useful for developing though

wget http://postgresql.org/ ...

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Downloading PostgreSQL
Commit Log
Branches
Tracking Changes

Using git

Clone down the PostgreSQL public git repository

Contains all of the changes to PostgreSQL

Since original CVS import in 1996

Postgres95 1.01 Distribution (”Virgin Sources”)

Around 40,000 commits to ”master” since

Already done on VM - /home/training/pg/src

cd /home/training/pg/src/master

git clone git://git.postgresql.org/git/postgresql.git

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Downloading PostgreSQL
Commit Log
Branches
Tracking Changes

Building from git

Additional requirements to build

Included on VM

bison/flex

Let’s build it!

cd /home/training/pg

./build.sh master

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Downloading PostgreSQL
Commit Log
Branches
Tracking Changes

Build script

Guts of the build script:

(cd "$BUILD" && \

CFLAGS=-I/usr/include/mit-krb5 \

LDFLAGS=-L/usr/lib/x86_64-linux-gnu/mit-krb5 \

"$SOURCE"/configure --silent --prefix="$INSTALL" --with-openssl \

--with-tcl --with-tclconfig=/usr/lib/tcl8.6 --with-perl \

--enable-debug --enable-cassert --enable-tap-tests --with-gssapi && \

make -s -j5 && \

make -s -j5 install && \

make -s -j5 check && \

make -s -j5 world && \

make -s install-world && \

make -s check && \

make -s check-world \

)

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Downloading PostgreSQL
Commit Log
Branches
Tracking Changes

Build script

build.sh includes my personal options

Very similar to Debian/Ubuntu build

Completely clean build (old builds rm -rf’d)

Parallel (-j5 build)

Silent configure (–silent) and build (make -s)

Warning/errors will still be displayed

Built with debugging and assertions

Builds/installs/checks ”world”

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Downloading PostgreSQL
Commit Log
Branches
Tracking Changes

Building PostgreSQL

Targets:

Default / ”all” - Just builds base PostgreSQL
”check” - Runs base PostgreSQL regression test
”install” - Installs base PostgreSQL
”world” - Build PostgreSQL + extensions + documentation
”check-world” - Runs extension regression tests too
”install-world” - Installs PG, docs, extensions
”installcheck” - Runs regression test against *existing* PG
”installcheck-world” - + Extension tests against existing PG

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Downloading PostgreSQL
Commit Log
Branches
Tracking Changes

Building PostgreSQL - Requirements

Targets:

Base build requires normal build dependencies
Plus bison/flex
Documentation depends on OpenJade, docbook
Lots of options, may require additional dependencies
PL/Perl requires perl, libperl-dev, etc
LDAP support requires libldap2-dev
VM installed with all build dependencies for Debian-based

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Downloading PostgreSQL
Commit Log
Branches
Tracking Changes

Commit Log

Every copy of git repository contains all changes

Does not require network to access/review log

cd /home/training/pg/src/master

git log

commit

Author: ...

Date: ...

Commit title

Commit description/log

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Downloading PostgreSQL
Commit Log
Branches
Tracking Changes

Commit Log

Commit logs as important, or maybe more, than comments

Why is extremely imporant!

Able to filter based on author/committer

cd /home/training/pg/src/master

git log --author sfrost

commit b7aac36245261eba9eb7d18561ce44220b361959

Author: Stephen Frost <sfrost@snowman.net>

Date: Fri Oct 9 10:49:02 2015 -0400

Handle append_rel_list in expand_security_qual

During expand_security_quals, we take the security barrier quals on an

RTE and create a subquery which evaluates the quals. During this, we

[...]

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Downloading PostgreSQL
Commit Log
Branches
Tracking Changes

PostgreSQL Committer vs. Author

PostgreSQL does not track ”author” using git

For PG, in git, ”Author” and ”Committer” always the same

Authors and contributors mentioned in commit log, eg:

commit b7aac36245261eba9eb7d18561ce44220b361959

Author: Stephen Frost <sfrost@snowman.net>

Date: Fri Oct 9 10:49:02 2015 -0400

Handle append_rel_list in expand_security_qual

[...]

Patch by Dean Rasheed

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Downloading PostgreSQL
Commit Log
Branches
Tracking Changes

PostgreSQL Backpatching

Generally noted in commit log if patch is back-patched

commit be400cd25c7f407111b9617dbf6a5fae761754cb

Author: Stephen Frost <sfrost@snowman.net>

Date: Mon Oct 5 10:14:49 2015 -0400

Add regression tests for INSERT/UPDATE+RETURNING

This adds regressions tests which are specific to INSERT+RETURNING and

UPDATE+RETURNING to ensure that the SELECT policies are added as

WithCheckOptions (and should therefore throw an error when the policy is

violated).

Per suggestion from Andres.

Back-patch to 9.5 as the prior commit was.

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Downloading PostgreSQL
Commit Log
Branches
Tracking Changes

Overview

Branches maintained for major versions

Only bug-fixes go into released versions

Feature development happens against master

Occationally, features back-patched to next release, pre-beta

Branch list (-r to show remotes):

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Downloading PostgreSQL
Commit Log
Branches
Tracking Changes

Listing Branches

git branch -r

origin/HEAD -> origin/master

origin/REL2_0B

origin/REL6_4

...

gbr

origin/HEAD -> origin/master

origin/REL2_0B

origin/REL6_4

...

gb -r

origin/HEAD -> origin/master

origin/REL2_0B

origin/REL6_4

...

gb

...

REL9_5_STABLE

feature

master

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Downloading PostgreSQL
Commit Log
Branches
Tracking Changes

Work on a local branch

PostgreSQL minimizes number of upstream branches

Ongoing development works through email and patches

Local branches are encouraged to allow frequent commits

Changes will be ”squashed”/”merged” before posting

Single, complete, generally seen as easier to review

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Downloading PostgreSQL
Commit Log
Branches
Tracking Changes

Feature Branch

Feature branch created on VM already

VM uses multi-work-dir git feature (more later)

One directory per branch

Simplifies working with multiple branches

Branches checked out on VM:

cd /home/training/pg/src

ls -1

feature

make_branch.sh

master

REL9_1_STABLE

REL9_2_STABLE

REL9_3_STABLE

REL9_4_STABLE

REL9_5_STABLE

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Downloading PostgreSQL
Commit Log
Branches
Tracking Changes

Feature Branch

Feature branch currently identical to master

git log -1; shows just last commit

cd /home/training/pg/src/master

git log -1

cd /home/training/pg/src/feature

git log -1

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Downloading PostgreSQL
Commit Log
Branches
Tracking Changes

More later...

We will cover more on branches later...

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Jumping into the source tree

Components of PostgreSQL:

psql - Command-line tool, client-side
libpq - Client-side library, used by psql (and others)
bin - Other binaries (Mostly server-side- initdb, etc)
backend - PostgreSQL Server-side code
contrib - Extensions to PostgreSQL

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Code Style

Try to make your code ’fit in’

Follow the PG style guide in the FAQ

Beware of copy/paste

Only C-style comments

Comments go on their own lines, generally

In comments, talk about why, not what or how

Comment blocks for functions, loops, etc

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

psql source

psql lives in src/bin/psql

View in our feature branch:

cd /home/training/pg/src/feature

cd src/bin/psql

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Main Components of psql

startup.c - main(), option parsing, psqlrc, etc

mainloop.c - Reads input, sends commands to backend

command.c - Handle backslash commands

describe.c -

All describe (\d) commands

tab complete.c - Tab completion, very handy

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Other Components of psql

copy.c -

Handle \copy requests

large obj.c - Handle large objects (PG LO, not bytea)

mbprint.c - Multibyte character handling

help.c - Various help/usage routines

print.c - Output/query result handling

input.c - User-entered info, readline interface, history

prompt.c - Constructs user-defined psql prompt

common.c - error/cancel handling, -o support, backend queries

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Other Components of psql

copy.c -

Handle \copy requests

large obj.c - Handle large objects (PG LO, not bytea)

mbprint.c - Multibyte character handling

help.c - Various help/usage routines

print.c - Output/query result handling

input.c - User-entered info, readline interface, history

prompt.c - Constructs user-defined psql prompt

common.c - error/cancel handling, -o support, backend queries

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Add a new backslash command!

Command to return schema size
We’ll use backslash y, because y-not
Basic structure of describe.c function:

bool listSchemaSize(const char *pattern)

{

initPQExpBuffer(&buf);

printfPQExpBuffer(&buf, "the query");

appendPQExpBufferStr(&buf, "more query");

if (pattern)

processSQLNamePattern(...)

appendPQExpBufferStr(&buf, "group by");

appendPQExpBufferStr(&buf, "order by");

PSQLexec(buf.data);

termPQExpBuffer(&buf);

printQuery(...)

PQclear(res);

return true;

}

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Query for backslash command!

General query structure:

SELECT nspname,

pg_size_pretty(

sum(

pg_total_relation_size(

quote_ident(nspname) || ’.’ || quote_ident(relname)

)))

FROM pg_namespace JOIN pg_class

ON (pg_namespace.oid = pg_class.relnamespace)

WHERE relkind = ’r’

GROUP BY nspname

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Variables needed for listSchemaSize

/*

* listSchemaSize

*

* for \y

*/

bool

listSchemaSize(const char *pattern)

{

PGresult *res;

PQExpBufferData buf;

printQueryOpt myopt = pset.popt;

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Build up Query

initPQExpBuffer(&buf);

printfPQExpBuffer(&buf,

"SELECT nspname as \"%s\",\n"

" pg_catalog.pg_size_pretty(pg_catalog.sum(\n"

" pg_catalog.pg_total_relation_size(\n"

" pg_catalog.quote_ident(nspname)\n"

" || ’.’ ||\n"

" pg_catalog.quote_ident(relname)))) as \"%s\"\n",

gettext_noop("Name"),

gettext_noop("Size"));

appendPQExpBufferStr(&buf,

"\nFROM pg_catalog.pg_namespace JOIN pg_catalog.pg_class\n"

" ON (pg_namespace.oid = pg_class.relnamespace)\n"

" WHERE relkind = ’r’");

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Build up Query - pattern and group/order by

if (pattern)

processSQLNamePattern(pset.db, &buf, pattern, true, false,

NULL, "pg_namespace.nspname", NULL, NULL);

appendPQExpBufferStr(&buf,

"\nGROUP BY nspname");

appendPQExpBufferStr(&buf, "\nORDER BY 1;");

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Execute and print query results

res = PSQLexec(buf.data);

termPQExpBuffer(&buf);

if (!res)

return false;

myopt.nullPrint = NULL;

myopt.title = _("List of schema sizes");

myopt.translate_header = true;

printQuery(res, &myopt, pset.queryFout, pset.logfile);

PQclear(res);

return true;

}

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Link it into command.c

Command to return schema size

We’ll use backslash y, because y-not

Basic structure of describe.c function:

/* \y is list schema size */

else if (strcmp(cmd, "y") == 0)

{

char *pattern;

pattern = psql_scan_slash_option(scan_state,

OT_NORMAL, NULL, true);

success = listSchemaSize(pattern);

if (pattern)

free(pattern);

}

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Next steps...

Test it!

Add into help.c, slashUsage()

Update psql SGML documentation:

doc/src/sgml/ref/psql-ref.sgml

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

libpq

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

libpq - client side

Lives in src/interfaces/libpq

”fe-” means ”frontend”

Implements the PostgreSQL protocol, client side

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Major libpq/client components

fe-auth.c - Send auth, get local username

fe-connect.c - Handles connection setup to PG

fe-exec.c - Send/receive query/data

fe-misc.c - Low-level put/get routines

fe-print.c - Pretty print query results

fe-protocol3.c - Handles speaking moden PG protocol

fe-secure.c - Handles encrypted/SSL communication

fe-secure-openssl.c - OpenSSL wrapping for SSL

libpq-events.c - libpq ”events” API

pqexpbuffer.c - String data type

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Other libpq components

fe-protocol2.c - Very old protocol

fe-lobj.c - Large Object support (not bytea)

pthread-win32.c - Partial pthreads implementation for Win32

win32.c - Win32 helper routines

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

libpq - server side

Lives in src/backend/libpq

”be-” means ”backend”

Implements the PostgreSQL protocol, server side

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

libpq/server components

auth.c - Handles auth with the client

be-secure.c - Handles encrypted/SSL communication

be-secure-openssl.c - OpenSSL wrapping for SSL

crypt.c - Lookup PW in pg authid, check it

hba.c - Find HBA entry for connection, get auth method

ip.c - IP address lookup/comparison routines

md5.c - Low-level md5 routines

pqcomm.c - Low-level communication routines

pqformat.c - Get/send various types of data, text or binary

pqmq.c - Support protocol conversation through shm mq

pqsignal.c - Handles blocking/unblocking signals

be-fsstubs.c - Large Object handling

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

bin

initdb - Initialize the database

pg archivecleanup - Cleans up old WAL, when not needed

pg basebackup - Take an online backup using replication

pgbench - Performance benchmarking tool

pg config - Provides info about installed PG

pg controldata - Display control info about a cluster

pg ctl - Control a PG instance (start, stop, restart)

pg dump - Logically dump out data and structures from PG

pgevent - Logging to Windows Event Log

pg resetxlog - Zero’s out XLOG, can rebuild pg control

pg rewind - ”Remaster” old master to be new follower

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

bin

pg test fsync - Test system fsync support

pg test timing - Test overhead/monotonicity of timing calls

pg upgrade - In-place or binary copy major rev upgrade tool

pg xlogdump - Decode and display WAL/XLOG data
scripts - simple wrapper commands:

clusterdb
createdb
createlang
createuser
dropdb
droplang
dropuser
pg isready
reindexdb
vacuumdb

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

initdb

Originally a shell script!

Creates template1, then copies it to template0 and postgres

Runs postgres in bootstrap mode, feeding data and commands

Data comes from postgres.bki file

Commands included in initdb.c and in .sql files

BKI file generated from src/backend/catalog

Invalid data in catalog .h files can cause initdb to fail

SQL files are ’system views.sql’ and ’information schema.sql’

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

pg archivecleanup

pg archivecleanup.c - Routines to run the cleanup

Includes src/backend/access/xlog internal.h

xlog internal.h provides XLOG structures, #define’s

Relatively simple

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

pg basebackup

Actually three binaries included in pg basebackup:

pg basebackup - Take online backups
pg receivexlog - Talks replication protocol to get XLOGs
pg recvlogical - Receive logically decoded (via a slot) data

pg basebackup.c - Main routine, handles backup tar file

pg receivexlog.c - Talks replication protocol to get XLOGs

pg recvlogical.c - For logical decoding

receivelog.c - Receive transaction log via streaming protocol

streamutil.c - Utility functions used by all three utilities

xlog internal.h also used here

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

pgbench

exprscan.l - Lexical scanner for pgbench expression language

exprparse.y - Bison grammar for pgbench expression syntax

pgbench.c - Main program

Nice example of a utility with a simple language parser

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

pg config

pg config.c - Main program

Very simple

Basically returns information from src/include/port.h

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

pg controldata

pg controldata.c - Main program

Reads $PGDATA/global/pg control

Uses lots of headers to minimize code duplication

src/include/

access/xlog.h
access/xlog internal.h
catalog/pg control.h
postgres.h (not the usual postgres fe.h)

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

pg ctl

pg ctl.c - Main program

Starts/stops/restart PG

Includes routines to see if PG is alive

Also handles promotion of follower to master

Quite a bit of Windows-specific code also

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

pg dump

pg dump.c - Main program for pg dump
pg dumpall.c - Main program for pg dumpall
pg restore.c - Main program for pg restore
common.c - Catalog lookup functions
compress io.c - Compression routines
dumputils.c - Routines common to pg dump and pg dumpall
parallel.c - Parallel support routines for pg dump
pg dump sort.c - Sort definitions for objects
pg backup db.c - Connect/reconnect to DB
pg backup utils.c - Routines common to pg dump/restore
pg backup archiver.c - Generic archive routines
pg backup custom.c - Custom output format
pg backup directory.c - Directory output format
pg backup null.c - Used to generate plain SQL script

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

pg dump

Backup formats implemented via one interface

Init function called to set up functions to use

common.c pulls structure information about each object type
then ”dumps” it by creating ArchiveEntry’s

ArchiveEntry() creates entry for appropriate type of backup

New objects require pg dump support

Mainly requires adding support to common.c

New pg dump formats should be pg dump format.c

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

pgeventlog

Builds as a library

Provides glue between backend and pg ctl and Windows event
log

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

pg resetxlog

pg resetxlog.c - Main program

Similar to pg controldata - lots of backend headers used

Also possible for it to rebuild pg control itself

Interesting headers included:

access/transam.h
access/tuptoaster.h
access/multixact.h
access/xlog.h
access/xlog internal.h
catalog/catversion.h
catalog/pg control.h
common/fe memutils.h
common/restricted token.h
storage/large object.h

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

pg rewind

pg rewind.c - Main program

copy fetch.c - Copy data using filesystem

datapagemap.c - Keep track of changed data pages

fetch.c - Generic fetch API, used by copy fetch.c and
libpq fetch.c

filemap.c - Keep track of changed files

file ops.c - Helper routines for writing to target dir

libpq fetch.c - Copy data using libpq

logginc.c - Logging routines

parsexlog.c - Read XLOG data, uses XLOG headers, etc

timeline.c - Read timeline’s history file

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

pg test *

pg test fsync.c - Simply tests different fsync methods

pg test timing.c - Tests how much overhead gettimeofday()
costs and that it is always increasing

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

pg upgrade - Main components

pg upgrade.c - Main program

check.c - Checks run against old cluster to ensure clean
upgrade

controldata.c - Compares old and new control data

dump.c - Generate dump of old cluster using pg dumpll

function.c - Checks C-language extensions and libraries

info.c - Get info to map old files to new files

page.c - Per-page conversion routines

parallel.c - Routines to run parallel operations

relfilenode.c - Handles copy/link of relation files

tablespace.c - Get tablespace info, init new tablespaces

version.c - Routines specific to certain PG versions

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

pg upgrade - Supporting components

server.c - General PG server connect, start/stop, routines

option.c - Option handling

exec.c - Routines for executing other programs, like
pg dumpall

file.c - Low-level routines for copying and hard-linking files

util.c - Utility routines, logging functions

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

backend Overview

Components of the backend (src/backend/...)

access - Methods for accessing different types of data

(heap, btree indexes, gist/gin, etc).

bootstrap - Parse Back-End Interface files (for catalog)

catalog - Routines used for modifying objects in pg_catalog

commands - User-level SQL commands (CREATE/ALTER TABLE, etc)

executor - Runs queries after planning / optimization

foreign - Handles Foreign Data Wrappers, user mappings, etc

lib - "General Purpose" / "Misc" functions

libpq - Backend interface to talk to libpq

main - Determines backend process startup / subsystems

nodes - Node handling, build, copy, compare

optimizer - Implements the costing system and generates plans

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

backend Overview continued

Components of the backend (src/backend/...)

parser - Lexer and Grammar, how PG understands the queries

port - Backend-specific platform-specific hacks

postmaster - "main" PG process that always runs,

answers requests, hands off connections

regex - Henry Spencer’s regex library, also used by TCL,

maintained more-or-less by PG now

replication - Code for handling replication, WAL shipping

rewrite - Query rewrite engine, used with RULEs, views

snowball - Snowball stemming, used with full-text search

storage - Storage layer, handles most direct file i/o and LO

tcop - "Traffic Cop"- gets the actual queries, runs them

tsearch - Full-Text Search engine

utils - Cacheing system, memory manager, ACLs

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

backend components

PG-specific ways to do

Memory management

Error logging / cleanup

Linked lists

Catalog lookups

Nodes / Various trees

Datums

Code Style

Patch submission process

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Memory management

Nearly all memory allocated is tracked as part of a context

Allocations happen through palloc()

Contexts exist for different operations and lifetimes

CurrentMemoryContext - what palloc() will use
TopMemoryContext - Backend Lifetime (forever)
Per-Query Context
Per-Tuple Context
Function-call Contexts

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Logging from PG

Use ereport() with errcode() and errmsg()

error level and errmsg() are required

PG has a style guide for error messages

ERROR or higher and PG will handle most cleanup

Transaction rollback handled by ereport()

Memory deallocation handled by ereport()

if (gzwrite(cstate->copy_gzfile, fe_msgbuf->data,

fe_msgbuf->len) != fe_msgbuf->len)

ereport(ERROR,

(errcode_for_file_access(),

errmsg("could not write to COPY file: %m")));

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Catalog Lookups

SysCache lookups with ’SearchSysCache’

Defined in utils/cache/syscache.c

Also some convenience routines in lsyscache.c

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Nodes

Various trees exist based on Nodes

Each node has a ’type’ plus appropriate data

’type’ is stored in the node, allows IsA() testing

Backend memory only, never out on disk, etc

Create nodes using makeNode(TYPE)

Node types defined in include/nodes/nodes.h

make / copy / equality funcs in backend/nodes/

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Tuples

Heap Tuple defined in include/access/htup.h

HeapTupleData is in-memory construct

Provides length of tuple, pointer to header

Pointer to disk buffer (must be pin’d)

Could be empty

May be a single palloc’d chunk

Could be independently allocated

Minimal Tuple structure (for hashing, etc)

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Tuples (more)

HeapTupleHeaderData and friends in htup details.h

Number of attributes

Provides various flags (NULL bitmap, etc)

Data follows the header (not in the struct)

Lots of macros for working with tuples in detail

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

TOAST

Large values can be compressed

May also get ”TOASTed” and moved to ”toast” table

Handled as a stored-out-of-line Datum

Need to be careful with variable length Datums

Typically try to avoid de-TOASTing Datums until necessary

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Other subsystems

Many things have already been done

Eg: linked list implementation (llist.h)

Generalized code should go in common area

Look at existing code

Real examples help immensely

Portability considerations

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Regression testing

src/test/regress

sql contains simple scripts to run

expected contains expected results from scripts

input are templates to generate sql files

output are templates for generated scripts

schedules are which tests to run

parallel defines sets of tests to run in parallel

serial are run serially

serial run by pg upgrade

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

contrib module structure

PostgreSQL-included backend extensions

Each has similar structure

Regression tests supported for contrib also

General structure of contrib modules:

Makefile to build contrib module
.c/.h for contrib module
sql directory for regression scripts
expected directory for regression script results
.control file with module information
–1.0.sql script to create functions, etc
Additional .h/.c files as necessary

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Writing a contrib module

Copy existing one!

Very simple one exists- passwordcheck.c

cd /home/training/pg/src/feature/contrib

cp -a passwordcheck mymodule

vi Makefile

cd mymodule

mv passwordcheck.c mymodule.c

vi Makefile

vi mymodule.c

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Using hooks

Many, many hooks exist in PostgreSQL

Allows module to gain control at certain point

passwordcheck uses ”check password hook”

Module’s PG init() called on module load

hooks can be chained, or not

Anything loaded is dangerous- just like backend C code

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
bin
backend
contrib

Loading modules

hook-only can be loaded via shared preload libraries

Complex modules are created with CREATE EXTENSION

CREATE EXTENSION requires .control, .sql script

Objects created during .sql are tracked as part of extension

Upgrade .sql scripts can be provided

eg: dblink–1.0–1.1.sql

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
protocol
backend

Query handling

Queries pass through many pieces to be executed

psql receives query directly from user

libpq used by psql to send query to server

server receives query via libpq (backend)

server parses query, plans query, executes query

Results sent to client via libpq (backend)

Results received by client via libpq

Results displayed by psql

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
protocol
backend

psql

Receives query via input.c

Sends query to libpq via common.c / SendQuery

Receives query results via common.c / ProcessResults

Prints results with print.c

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
protocol
backend

libpq

Receives query via fe-exec.c / PQexec

Sends query to backend via fe-exec.c / PQsendQuery

Receives query results via fe-protocol.c / pqParseInput3()

fe-exec.c gets results via parseInput

Results returned to caller via PQresults

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
protocol
backend

Simple query

Query message sent to backend

backend responds with RowDescription

Followed by DataRow messages, for all rows

Next is CommandComplete

Finally ReadyForQuery

Multiple RowDescription/DataRow/CommandComplete
possible

One for each SQL query in string sent by client

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
protocol
backend

Extended query

Parse message sent first, includes placeholders

Backend responds with ParseComplete

Bind message provides values for placeholders

Execute message kicks off query

backend responds with RowDescription

Followed by DataRow messages, for all rows

Next is CommandComplete

Frontend should issue Sync message at end of Extended
messages

Finally ReadyForQuery

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
protocol
backend

backend - traffic cop

src/backend/tcop/postgres.c

PostgresMain() reads command from protocol layer

exec simple query() called to execute query

Query parsed using pg parse query()

Using result of parsing, analyze and rewrite query

Plan query using pg plan queries

Calls planner(), plans/optimizes query

Then calls ExecutorRun via Portal

Receiver created and used for results

End command

Loop back up for next query

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
protocol
backend

backend - parser

src/backend/parser

raw parser() called from pg parse query()

Runs bison/flex generated parser

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
protocol
backend

backend - planner

Actually planner and optimizer

Lives in src/backend/optimizer

Entry is plan/planner.c / planner()

Heavy lifting by subquery planner()

Followed by grouping planner()

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
protocol
backend

backend - executor

Handles executing the query and returning results

Lives in src/backend/executor

Entry is execMain.c / ExecutorRun()

Calls down to ExecutePlan()

Then ExecProcNode() - execute node, return a tuple

Continues for specified number of tuples, or all

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
protocol
backend

backend - tuplestore

Receive of tuples can be a tuplestore

Exists in memory, while memory is available

Spills over to disk when out of memory

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

psql
libpq
protocol
backend

backend - storage

src/backend/storage

Only one storage manager today- smgr

General concept kept for now

smgr.c provides interface for users

md.c maps smgr interface to kernel calls

file/fd.c manages set of open file descriptors

Do not want to hit open file limit

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Git review
Parser / Grammar
Code Changes
Work on a patch!

Create a Branch

Script provided to create new branch

make branch.sh - pass new branch name, and branch to go
from

Uses git-new-workdir for new branch

git-new-workdir creates new directory which is linked to main
git repo

Minimized additional disk space requires

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Git review
Parser / Grammar
Code Changes
Work on a patch!

Commiting in Git

Add files to commit using ’git add’

commit files added using ’git commit’

commit all changed files with ’git commit -a’

Requires a commit message

Short commit message can be passed with -m

’git commit -am ”message”’

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Git review
Parser / Grammar
Code Changes
Work on a patch!

Fix-up Commits

git commit -a –fixup HEAD

Handy command- aliases as ’gcf’

Fixup commits do not require a message

Will be automatically set for squash

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Git review
Parser / Grammar
Code Changes
Work on a patch!

Squashing Commits

Combine commits together

Prefer to squash most commits into single, large, commit

Also generally simpler/easier to review larger patches

’git rebase -i –autosquash’

aliased as grbi

Opens editor to choose actions

Generally, ’reword’ first, ’squash’ rest

Opens editor for rewording commit message

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Git review
Parser / Grammar
Code Changes
Work on a patch!

Git format-patch

Generates patch from commits

Patch can be emailed, etc

’git format-patch @u –stdout’

aliased as gfp

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Git review
Parser / Grammar
Code Changes
Work on a patch!

Git diff

Provides diff of changes from last commit

’git diff’

aliased as ’gd’

Diff against upstream instead

’git diff @u’

aliased as gdu

Checks also available

’git diff –check’ - alias is gdc

’git diff –check @u’ - alias is gdcu

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Git review
Parser / Grammar
Code Changes
Work on a patch!

So you have an idea...

Where to begin?

Depends on your idea, but I prefer the parser

Grammar informs the design

Also one of the hardest items to get agreement on

Grammar is in src/backend/parser/

scan.l - lexer, handles tokenization

gram.y - actual grammar

Built with flex (lexer) and bison (parser)

Rarely have to change the lexer (be careful!)

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Git review
Parser / Grammar
Code Changes
Work on a patch!

Modifying the Grammar

Grammar is a set of productions

”main” is the ’stmt’ production
Lists all the top-level commands
Each is then its own production

stmt :

AlterEventTrigStmt

| AlterDatabaseStmt

| AlterDatabaseSetStmt

...

| CopyStmt

CopyStmt :

COPY opt_binary qualified_name opt_column_list opt_oids

copy_from opt_program copy_file_name copy_delimiter

opt_with copy_options

{

CopyStmt * n = makeNode(CopyStmt);

n->relation = $3;

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Git review
Parser / Grammar
Code Changes
Work on a patch!

Modifying CopyStmt

Add it into the COPY production

Modify the C template code as needed

C code is extracted by bison
Run through a set of changes (eg: changes ”$3”)
Compiled as part of the overall parser (gram.c)

Remember to update the keywords list (kwlist.h)

Also remember to add to unreserved keywords

Try to avoid creating new *reserved* keywords

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Git review
Parser / Grammar
Code Changes
Work on a patch!

Adding an option to COPY

--- a/src/backend/parser/gram.y

+++ b/src/backend/parser/gram.y

@@ -521,8 +521,8 @@ static void processCASbits(int cas_bits, int location, const char * constrType,

- COMMITTED CONCURRENTLY CONFIGURATION CONNECTION CONSTRAINT CONSTRAINTS

- CONTENT_P CONTINUE_P CONVERSION_P COPY COST CREATE

+ COMMITTED COMPRESSED CONCURRENTLY CONFIGURATION CONNECTION CONSTRAINT

+ CONSTRAINTS CONTENT_P CONTINUE_P CONVERSION_P COPY COST CREATE

@@ -2403,6 +2403,10 @@ copy_opt_item:

{

$$ = makeDefElem("header", (Node *)makeInteger(TRUE));

}

+ | COMPRESSED

+ {

+ $$ = makeDefElem("compressed", (Node *)makeInteger(TRUE));

+ }

| QUOTE opt_as Sconst

{

$$ = makeDefElem("quote", (Node *)makeString($3));

@@ -12471,6 +12475,7 @@ unreserved_keyword:

| COMMITTED

+ | COMPRESSED

| CONFIGURATION

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Git review
Parser / Grammar
Code Changes
Work on a patch!

What about the code?

COPY has a function to process options

Surprise, it’s called ”ProcessCopyOptions”

COPY is defined in backend/commands/copy.c

COPY state info

Local state structure CopyStateData also in copy.c

Not in a .h because only COPY needs it

Define structures in .c files near the top

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Git review
Parser / Grammar
Code Changes
Work on a patch!

Option handling in COPY

@@ -109,6 +119,7 @@ typedef struct CopyStateData

bool binary; /* binary format? * /

+ bool compressed; /* compressed file? * /

bool oids; /* include OIDs? * /

@@ -889,6 +1186,20 @@ ProcessCopyOptions(CopyState cstate,

}

+ else if (strcmp(defel->defname, "compressed") == 0)

+ {

+#ifdef HAVE_LIBZ

+ if (cstate->compressed)

+ ereport(ERROR,

+ (errcode(ERRCODE_SYNTAX_ERROR),

+ errmsg("conflicting or redundant options")));

+ cstate->compressed = defGetBoolean(defel);

+#else

+ ereport(ERROR,

+ (errcode(ERRCODE_SYNTAX_ERROR),

+ errmsg("Not compiled with zlib support.")));

+#endif

+ }

else if (strcmp(defel->defname, "oids") == 0)

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Git review
Parser / Grammar
Code Changes
Work on a patch!

Other changes

Many more changes to copy.c needed

New ’COMPRESSED’ state

Tracking gzFile instead of FILE*

Using gzread / gzwrite instead of read/write

Data input/output handling

All data handled with 2 buffers, uncompressed and compressed

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Git review
Parser / Grammar
Code Changes
Work on a patch!

Diffstat

doc/src/sgml/ref/copy.sgml | 12 ++

src/backend/commands/copy.c | 458 +++-----

src/backend/parser/gram.y | 9 +-

src/backend/storage/file/fd.c | 97 ++++++++++++

src/include/parser/kwlist.h | 1 +

src/include/storage/fd.h | 9 ++

src/test/regress/input/copy.source | 20 +++

src/test/regress/output/copy.source | 18 +++

8 files changed, 583 insertions(+), 41 deletions(-)

doc/src - Documentation updates

Modify fd.c for compressed files

fd.c provides file descriptor cacheing

Added: AllocateFileGz, FreeFileGz

src/test/regress - New regression tests

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Git review
Parser / Grammar
Code Changes
Work on a patch!

COPY PIPE

Follow the mailing lists

Watch for others working on similar capabilities

Try to think about general answers, not specific

Be supportive of other ideas and approaches

Send and receive COPY data from program instead

E.g. for gzipped files

postgres=# COPY t FROM PROGRAM ’zcat /tmp/t.csv.gz’

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Git review
Parser / Grammar
Code Changes
Work on a patch!

Choose grammar to use

Strongly suggest, initially, simple new command

Implement grammar first

Add nodes and structures required for grammar

Implement actual command second

Follow existing style for where code goes

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Git review
Parser / Grammar
Code Changes
Work on a patch!

ALTER TABLE .. FORCE ROW SECURITY

Another feature patch to review

Relatively simple

Includes grammar changes

Also modified catalog tables

Update catalog version- requires initdb

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Mailing Lists
Commitfest Application

Mailing Lists

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Mailing Lists
Commitfest Application

Submitting Patches

Use context diff or git-diff

Read the actual patch before posting

Email -hackers the patch

Include description of the patch

Don’t forget regression tests, pg dump support,
documentation

Register patch on commitfest.postgresql.org

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Mailing Lists
Commitfest Application

Commitfest Application

New patches submitted via commitfest.postgresql.org

Patch should first be emailed to -hackers mailing list

One on -hackers, register patch in commitfest

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Mailing Lists
Commitfest Application

Patch Status

Attempt to track what the current status of the patch is

”Needs Review” - Waiting for someone to review the patch

”Waiting on Author” - For various reasons

”Ready for Committer” - Next level review

”Returned with Feedback” - Essentially bumped to next CF

”Rejected” - Generally means not right approach, etc

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Mailing Lists
Commitfest Application

Patch Review

Important that patches are reviewed before being applied

Helpful to have non-committers do initial review

When submitting a patch, consider what patch to review

Hopefully, other authors will review your patch

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Mailing Lists
Commitfest Application

Patch Commit

Once patch is in ”Ready for Committer”...

Hopefully it gets committed!

May be applied, returned, rejected by committer

Commit message will include attribution

Stephen Frost PGConf.EU 2015

Git
Source Intro
Architecture

Feature Development
Patch Submission

Mailing Lists
Commitfest Application

Thank You!

Thank You!
stephen@crunchydata.com

Stephen Frost PGConf.EU 2015

	Git
	Downloading PostgreSQL
	Commit Log
	Branches
	Tracking Changes

	Source Intro
	psql
	libpq
	bin
	backend
	contrib

	Architecture
	psql
	libpq
	protocol
	backend

	Feature Development
	Git review
	Parser / Grammar
	Code Changes
	Work on a patch!

	Patch Submission
	Mailing Lists
	Commitfest Application

