
Intro to PostgreSQL Security

PGConf.NYC 2014
New York City, NY

Stephen Frost
sfrost@snowman.net

Resonate, Inc. • Digital Media • PostgreSQL • Hadoop • techjobs@resonateinsights.com • http://www.resonateinsights.com

mailto:techjobs@resonateinsights.com
http://www.resonateinsights.com

Stephen Frost
•PostgreSQL

•Major Contributor, Committer
•Implemented Roles in 8.3
•Column-Level Privileges in 8.4
•Contributions to PL/pgSQL, PostGIS

•Resonate, Inc.
•Principal Database Engineer
•Online Digital Media Company
•We're Hiring! - techjobs@resonateinsights.com

mailto:techjobs@resonateinsights.com

Do you read...
•planet.postgresql.org

Security in PostgreSQL
•Role system

•Role-level Privileges
•Authentication

Security in PostgreSQL
•Authorization

•Containers
•GRANT / REVOKE
•Defaults

Security in PostgreSQL
•Use-cases

•Web-based
•Enterprise DB / DW

Roles
•Identities inside PostgreSQL
•Each connection is assiged specific role
•Roles encompass both users and groups
•Nearly all objects are "owned" by a specific role
•Shared across entire cluster (not per-DB)

Roles
•Objects in PG with owners:
* Databases * Schemas
* Tables (Local and Foreign) * Functions
* Aggregates * Collations
* Conversions * Domains
* Event Triggers * Foreign Data Wrappers
* Languages * Large Objects
* Sequences * Foreign Servers
* Tablespaces * Types
* Views (Normal and Materialized)
* Operators (and Classes and Families)
* Text Search Configuration and Dictionaries

Role Membership
•Roles can be members of other roles
•GRANT used to add a role to another role
•Loops are forbidden
•WITH ADMIN allows the role to grant the role

Role Membership
•inherit / noinherit

•inherit - privileges (not attributes) automatic
•noinherit - "SET ROLE ..." required
•Great for sudo-like DB administration
•Create "barrier" role- eg: "admin", with noinherit
•Grant "admin" to, uh, admins, postgres to "admin"

•Supports traditional "User/Group", and then some

Changing Roles
•"SET ROLE" SQL command

•Allows gaining "noinherit" privileges
•Can be used to drop privileges too
•DISCARD ALL; will reset role too
•"$user" in search_path follows SET ROLE

Changing Roles
•Security Definer Functions run as owner

•Need to be careful with search_path
•Strongly recommend against superuser owned

•Views also run as owner
•Need to mark view 'security_barrier'

Role Privileges
•SUPERUSER

•Bypass ALL security (and some sanity..) checks
•Use very sparingly
•Never login to SUPERUSER role directly
•Require "SET ROLE postgres;" to be superuser

Role Privileges
•What's wrong with SUPERUSER?
=# delete from pg_database;
DELETE 3

Role Privileges
•What's wrong with SUPERUSER?
=# delete from pg_class;
DELETE 295

Role Privileges
•What's wrong with SUPERUSER?
=# COPY pg_class TO '/home/sfrost/pg/src/clean/install/data/postmaster.conf' WITH CSV;
COPY 295

Role Privileges
•What's wrong with SUPERUSER?
=# COPY pg_class TO PROGRAM 'cat > postgresql.conf';
COPY 295

Role Privileges
•CREATEDB

•Allows creating new databases
•Give out sparingly- DBs are not free
•User becomes database owner

Role Privileges
•CREATEROLE

•Allows creating new roles
•ALSO allows modifying EXISTING roles
•Can add CREATEDB to roles, et al
•Non-superuser can't modify superuser
•Use with caution

Role Privileges
•REPLICATION

•User can connect to "replication" database
•Only grant to dedicated replication accounts
•Can read every file in the cluster

Role Privileges
•LOGIN

•Role is allowed to connect to PG
•Roles with LOGIN will show up in "pg_user"
•Roles with NOLOGIN will show up in "pg_group"

Role Privileges
•CONNECTION LIMIT

•Concurrent connection limit
•Changing this will impact existing connections

Role Privileges
•VALID UNTIL

•Can't connect after this time
•Does not impact existing connections

Authentication
•Connection parameters

•Database
•PostgreSQL Role
•Client IP / Unix Socket
•SSL vs. non-SSL

Authentication
•Based on parameters, auth method is chosen
•Auth method can provide "system" username
•System username can be mapped to PG role

pg_hba.conf
•Processed top-to-bottom, first match wins
•"User" can be "+role" to mean "member of role"
•Database can be "all", "replication", "sameuser"
TYPE DATABASE USER ADDRESS METHOD
"local" is for Unix domain socket connections only
local all all peer map=unixmap
IPv4 local connections:
host all all 127.0.0.1/32 md5
IPv6 local connections:
host all all ::1/128 md5
Allow replication connections from localhost, by a user with the
replication privilege.
#local replication repl_user md5
#host replication repl_user 127.0.0.1/32 md5
#host replication repl_user ::1/128 md5

pg_ident.conf
•Also processed top-to-bottom, by map name
•Regexps can be used with "/" and "1"
MAPNAME SYSTEM-USERNAME PG-USERNAME
unixmap root postgres
unixmap /^(.*)$ \1
localrealm /^([^@]*)@MYREALM\.COM$ \1
localrealm jow@OTHERREALM.com otherjoe
clientcert "cn=Stephen P. Frost" sfrost
clientcert "cn=John Doe" jdoe

Auth Methods
•peer

•Unix socket based- uses the unix username
•punts on the authentication issue to the unix layer
•(ident covers this but also identd, do not use)

Auth Methods
•gss / sspi / krb5 (krb5 deprecated)

•Kerberos / Active Directory based authentication
•Perfect for Enterprise deployments
•Supports cross-realm, princ-based identification
•SSL required only for data encryption (not authN)
•No option for Kerberos/GSS data encryption today

Auth Methods
•cert

•Client-side SSL certificates
•Useful with OpenSSL support, eg: Smart Cards
•SSL required for SSL certificates, of course
•Requires full PKI setup, CAs, etc

Auth Methods
•md5

•Normal password-based authentication
•("password" exists, but PW is sent in the clear)
•Should use SSL with this

Auth Methods
•radius

•RADIUS servers- relatively rare / special case
•Need to use SSL to PG, and RADIUS encryption

•reject
•Special case- reject if matched

Auth Methods
•ldap

•Allows for simple-bind, or LDAP lookup
•Need to use SSL to PG, and TLS with LDAP

•trust
•Allows any connection to connect as any user

Authorization
•Container objects

•Databases
•Schemas

•To access objects inside containers-
•Must have CONNECT privs on the database
•Must have USAGE privs on the schema

GRANT / REVOKE
•GRANT <privs> ON <object> TO <roles>;
•REVOKE <privs> ON <object> FROM <roles>;
•GRANT ... ON ALL <objtype> IN <schema> ...
•"PUBLIC" means "everyone"
•WITH GRANT OPTION allows role to re-grant priv

GRANT / REVOKE
•Owning the object grants all rights, and then some
•Only owner of object can DROP the object
GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }
 [, ...] | ALL [PRIVILEGES] }
 ON { [TABLE] table_name [, ...]
 | ALL TABLES IN SCHEMA schema_name [, ...] }
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

...

Database Privileges
•CREATE (Able to create schemas)
•CONNECT (Granted to PUBLIC by default)
•TEMPORARY (Able to create temporary objects)
•Owners can use ALTER DATABASE to

•RENAME
•OWNER
•SET TABLESPACE
•SET other config options

Schema Privileges
•CREATE (Able to create objects in the schema)
•USAGE (Able to see objects- need rights on them)
•"public" schema defaults with CREATE to PUBLIC
•Owners can use ALTER SCHEMA to

•RENAME
•OWNER

Table Privileges
•SELECT (SELECT any/all columns)
•INSERT (INSERT any/all columns)
•UPDATE (UPDATE any/all columns)
•DELETE
•TRUNCATE (Not the same as DELETE FROM ...)
•REFERENCES (Can create a FK to the table)
•TRIGGER (Can create a trigger on the table)

Table Privileges
•Table owners can use ALTER TABLE to

•ADD/DROP COLUMN
•ADD/DROP Constraints
•OWNER
•CLUSTER
•INHERIT / NOINHERIT
•Lots of stuff...

Column Privileges
•SELECT (Only select out specified column)
•INSERT (Can only insert non-default values)
•UPDATE (Can only update these columns)
•REFERENCES (Can only reference specified column)
•Table owners can ALTER TABLE .. ALTER COLUMN to

•SET/DROP DEFAULT expression
•SET STATISTICS (target)
•SET DATA TYPE
•SET STORAGE

Sequence Privileges
•USAGE (currval && nextval)
•SELECT (Only currval)
•UPDATE (nextval && setval / reset sequence)

Function Privileges
•EXECUTE
•Granted to "PUBLIC" by default!
•Use caution with SECURITY DEFINER

Tablespace Privileges
•CREATE
•User allowed to create objects in tablespace
•Any kind of object allowed
•Can be temp or non-temp (even if temp tablespace)
•Database Default Tablespace

•Skips tablespace priv checking
•Only for connections to that DB

Usage Privileges
•Objects with just USAGE privs
•DOMAIN
•FOREIGN DATA WRAPPER
•FOREIGN SERVER
•LANGUAGE
•TYPE

Web-Scale
•Roles exist in a PG shared catalog
•Common across all DBs
•Unable to be partitioned
•Could be sharded..

•Unable to set CHECK constraints
•No triggers
•etc..

•BUT- use roles also

Roles for Web-Scale
•Use tables for website users
•Use roles for permissions management
•Independent roles for ETL, daemon, etc

Roles for Web-Scale
•Read-only role

•Only has read access
•Useful for scaling out with read slaves

•Read/write role(s)
•Possibly more than one (eg: per site)
•Minimize access to what code "should" do

Enterprise Deployment
•Individual logins per user
•Roles for permissions management
•Roles to manage access to databases
•Kerberos / GSS / AD integration / Pass-thru

Enterprise Deployment
•Views

•Limit rows individual users can see
•Security Barrier

•PL/PgSQL Functions
•Control writes- include auditing
•Security Definer

Security Labels
•Defines labels for objects in PG
•Hooks for security providers (eg: sepgsql)
SECURITY LABEL [FOR provider] ON
{
 TABLE object_name |
 COLUMN table_name.column_name |
 AGGREGATE aggregate_name (aggregate_signature) |
 DATABASE object_name |
 DOMAIN object_name |
 EVENT TRIGGER object_name |
 FOREIGN TABLE object_name
 FUNCTION function_name ([[argmode] [argname] argtype [, ...]]) |
 LARGE OBJECT large_object_oid |
 MATERIALIZED VIEW object_name |
 [PROCEDURAL] LANGUAGE object_name |
 ROLE object_name |
 SCHEMA object_name |
 SEQUENCE object_name |
 TABLESPACE object_name |
 TYPE object_name |
 VIEW object_name
} IS 'label'

Additional Security
•SELinux Integration

•sepgsql security provider
•Works with SECURITY LABEL

•EVENT Triggers
•Can prevent certain actions

•Row-Level Security being worked on
•Updatable security-barrier views

Questions?

Thank you!
Stephen Frost

sfrost@snowman.net
@net_snow

	Stephen Frost
	Do you read...
	Security in PostgreSQL
	Security in PostgreSQL
	Security in PostgreSQL
	Roles
	Roles
	Role Membership
	Role Membership
	Changing Roles
	Changing Roles
	Role Privileges
	Role Privileges
	Role Privileges
	Role Privileges
	Role Privileges
	Role Privileges
	Role Privileges
	Role Privileges
	Role Privileges
	Role Privileges
	Role Privileges
	Authentication
	Authentication
	pg_hba.conf
	pg_ident.conf
	Auth Methods
	Auth Methods
	Auth Methods
	Auth Methods
	Auth Methods
	Auth Methods
	Authorization
	GRANT / REVOKE
	GRANT / REVOKE
	Database Privileges
	Schema Privileges
	Table Privileges
	Table Privileges
	Column Privileges
	Sequence Privileges
	Function Privileges
	Tablespace Privileges
	Usage Privileges
	Web-Scale
	Roles for Web-Scale
	Roles for Web-Scale
	Enterprise Deployment
	Enterprise Deployment
	Security Labels
	Additional Security
	Questions?

