
Doing PITR Right
(Point-In-Time-Recovery)

Who Am I?

Stephen Frost
Sr. Database Engineer @ Resonate, Inc.

 Digital Media Company working with big
data – PostgreSQL, Hadoop, etc.

 We're Hiring!
techjobs@resonateinsights.com

PostgreSQL Major Contributor
 Implemented Roles (8.1)
 Column Level Privileges (8.4)
 Contributions to PL/pgSQL, PostGIS

What is PITR?

Backup Strategy using PG's Write-Ahead-Log
(WAL)

 All changes are written to WAL first
 WAL used for crash recovery

PITR requires
 Full backup
 WAL files since last full backup

Full backup can be taken while DB is on-line

Why PITR?

 What about pg_dump?
 Single-threaded, not practical for
large-scale databases

 Restore can be parallel, but still very slow
 Data has to be re-parsed
 Indexes must be rebuilt

 Keeps a very long running transaction
open..

 But we have replication!
 What happens when you drop a table on
the master?

 … or someone else does?
 Filesystem snapshots!

 You only have one filesystem..?
 Snapshot must be consistent across all
volumes...

archive_command

 Simple – NEVER overwrite files, so check
for them first

 test ! -f /mnt/server/archivedir/%f && \
 cp %p /mnt/server/archivedir/%f'
 Advanced – Test, test, test! Verify return
codes.

 my_shell_script.sh %p %f
 Remote – Minimal and really insufficient-
needs more

 scp %p remote:path/%f
 Ensure the archive command ONLY returns
0 (true) on success

 Non-zero should be returned for failure OR
if the file already archived
 PG will re-attempt periodically

 Monitor your archiving or PG may run out
of disk space!

Backing up PG

 Configure PG for archiving first!
 (and check that's it's working)

 Before copying files, run:
 psql -c “select pg_start_backup('mylabel',
true);”

 'mylabel' can be anything; might use
where the backup is stored to..

 Copy all files in the 'data' directory, using
'rsync' or 'tar'
 Make sure to include all tablespace
directories!

 Include config files, regular PG log files,
etc.

 Exclude pg_xlog, postmaster.pid,
postmaster.opts

 After copying files, run:
 psql -c “select pg_stop_backup();”

 Put this all in a shell script
 Include timing info, capture all output,
verify return codes, etc..

pg_basebackup

 Makes that whole backup thing WAY easier
 Configure PG for archiving first!

 (and check that's it's working)
 Uses the PG replication protocol

 Needs max_wal_senders set > 0
 Connects to the running PG database
 Streams the data files over the connection

 Important arguments
 -D – directory to output files to;
tablespaces go to same path as on master

 -F format (plain or tar)
 -X method (fetch or stream); to include
xlog files in backup

 -l <label>, -z (compress), -c fast
(checkpoint), -P (progress)

 Reminder: Back up your config files, regular
log files, etc!

pg_receivexlog

 Streams transaction log to files from PG
 Connects to PG using replication protocol
 Removes the need for archive_timeout
 Important arguments:

 -D dir; directory to store the files
 Still use archive_command!

 Have it test that the file has been
archived

 sleep 5 && test -f /mnt/server/archivedir/
%f

 Sleep required due to async replication
 Otherwise, PG might recycle logs prior to
being archived

WAL-e

 System to push PG backups and WAL to
Amazon's S3

 http://github.com/wal-e/wal-e
 Includes:

 Compression
 Encryption
 Full base backups
 WAL files
 Restore of base backups
 Restore of WAL files

 Used extensively by Heroku
http://heroku.com

http://github.com/wal-e/wal-e
http://heroku.com/

Restoring!

 Test your backups!
 Test by doing a restore!
 Test regularly! (more than once a year..)
 Test multiple scenarios

 What if you had to restore from tape?
 From off-site backups?
 Fail-over to your 2nd site?

Restoring with PITR

 Restore your full backup
 Ideally, somewhere else.
 pg_xlog should be empty or not there
 Ensure it exists with correct perms
 Verify tablespace symlinks and files
 If old system still around:

 Copy files from the old pg_xlog into the
new

 May have unarchived files, allowing
restore to closer to time of crash

recovery.conf

 Create a recovery.conf file
 restore_command – command used to
retrieve archived xlog files
 %f – filename to be restores
 %p – locataion to restore file to
 Must only return zero on success
 Will be asked for files that were not
archived

 Recovery target options:
recovery_target_....
 name – Point created with
pg_create_recovery_point()

 time – Timestamp to recover up to and
including

 xid – transaction ID, up to and including
commit

 Inclusive – for time or xid, set to false to
stop before time/xid

 timeline – Recovery into specific timeline

Simple restore

 Simple recovery.conf
 restore_command = 'cp
/mnt/server/archivedir/%f "%p"'

 recovery_target_time = '2013-03-19
12:00'

 pause_at_recovery_target = false
 Recovers up to the specified time
 Immediately moves into 'on-line' mode at
end

Advanced PITR Restore

 More complex recovery.conf
 restore_command = 'myscript %f %p'
 recovery_target_xid = '1234'
 pause_at_recovery_target = true

 recovery_target_xid would need to come
from user log files which include xids

 Pauses after recovery, allows user to
connect and issue queries to check if they
are at the right spot.

 If recovered to the right point, run to
complete recovery:
 select pg_xlog_replay_resume();

Demo?

Questions?

Thank You

Stephen Frost

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

